
Compiler
Lec 02

1

Book
Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Phases of a compiler

4

Lexical Analysis
PART ONE

5

The Tasks of the Lexical
Analyzer
The main task of the lexical analyzer is to read the input characters
of the source program. Group them into lexemes. Produce as output
a sequence of tokens for each lexeme in the source program.

When the lexical analyzer discovers a lexeme constituting an
identifier, it needs to enter that lexeme into the symbol table.

Remove comments and whitespace (blank, newline, tab, and
perhaps other characters that are used to separate tokens in the
input).

keep track of the number of newline characters seen, so it can
associate a line number with each error message.

If the source program uses a macro-preprocessor, the expansion of
macros may also be performed by the lexical analyzer.

6

Lexical Analyzer & Parsing
Lexical analysis and parsing are separated:
Simplicity: For example, a parser that had to deal with

comments and whitespace would be more complex than
one that can assume comments and whitespace have
already been removed by the lexical analyzer.

Efficiency: A separate lexical analyzer allows us to apply
specialized techniques that serve only the lexical task, not
the job of parsing.

Compiler portability is enhanced. Input-device-specific
features can be restricted to the lexical analyzer.

7

Tokens
A token is a pair
consisting of a token
name and an optional
attribute value.

The token name is an
abstract symbol
representing a kind of
lexical unit, e.g., a
particular keyword, or a
sequence of input
characters denoting an
identifier.

E = M * C ** 2

<id, pointer to symbol-table entry for E>

<assign_op>

<id, pointer to symbol-table entry for M>

<mult_op>

<id, pointer to symbol-table entry for C>

<exp_op>

<number, integer value 2>

8

Patterns
A pattern is a description of the form
that the lexemes of a token may take.

In the case of a keyword as a token,
the pattern is just the sequence of
characters that form the keyword.

For identifiers and some other
tokens, the pattern is a more complex
structure that is matched by many
strings.

else

[0-9]+

[a-z]+

9

Lexemes
A lexeme is a sequence
of characters in the
source program that
matches the pattern for
a token and is identified
by the lexical analyzer as
an instance of that
token.

E = M * C ** 2

E

=

M

*

C

**

2

10

Examples
1. One token for each keyword.

2. Tokens for the operators, either
individually or in classes such as the
token Comparison

3. One token representing all
identifiers.

4. One or more tokens representing
constants, such as numbers.

5. Tokens for each punctuation symbol,
such as left and right parentheses,
comma, and semicolon.

Token Patterns Lexemes

if if if

else else else

id [a-z]+ pi, score

integer [0-9]+ 0, 25, 685

comparison <|>|<= <, >, <=, ==

11

Attributes for Tokens
The pattern for token
number matches both 0 and
1.

It is extremely important
for the code generator to
know which lexeme was
found in the source program.

Thus , in many cases the
lexical analyzer returns to
the parser an attribute value
that describes the lexeme
represented by the token.

<id, pointer to symbol-table entry>

<exp_op>

<number, integer value>

<type, lexeme, line, column>

12

Example

13

Problems When Recognizing
Tokens
Fortran 90 ignores whitespace.

First mean Do5i = 1.25.

Second, mean Do statement.

Need to lookahead.

DO 5 I = 1.25

DO 5 I = 1,25

14

Lexical errors
Some errors are out of power of lexical analyzer
to recognize:

fi (a == f(x)) …

However it may be able to recognize errors like:
d = 2r

Such errors are recognized when no pattern for
tokens matches a character sequence.

15

Error recovery
Panic mode: successive characters are ignored
until we reach to a well formed token.

Delete one character from the remaining input.

Insert a missing character into the remaining
input.

Replace a character by another character.

Transpose two adjacent characters.

16

Input Buffering
Sometimes lexical analyzer needs to lookahead
some symbols to decide about the token to return
In C language: we need to look after -, = or < to decide

what token to return (- > , ==, or <=).

In Fortran: DO 5 I = 1.25

We need to introduce a two buffer scheme to
handle large lookaheads safely

17

Two issues in lexical analysis.
◦ How to specify tokens (patterns)?

◦ How to recognize the tokens giving a token specification?

How to specify tokens:
◦ All the basic elements in a language must be tokens so that

they can be recognized.

◦ Token types: constant, identifier, reserved word, operator
and misc. symbol.

Tokens are specified by regular expressions.

Specification of Tokens

18

◦ alphabet : a finite set of symbols. E.g. {a, b, c}

◦ A string over an alphabet is a finite sequence of symbols drawn from that
alphabet (sometimes a string is also called a sentence or a word).

◦ A language is a set of strings over an alphabet.

◦ Operation on languages (a set):

◦ Example:
◦ L={aa, bb, cc}, M = {abc}

Operations on Languages

19

Regular expression
Ɛ is a regular expression, L(Ɛ) = {Ɛ}

If a is a symbol in ∑then a is a regular expression,
L(a) = {a}

(r) | (s) is a regular expression denoting the
language L(r) ∪ L(s)

 (r)(s) is a regular expression denoting the
language L(r)L(s)

(r)* is a regular expression denoting (L(r))*

(r) is a regular expression denting L(r)

20

Example

21

Finite Automata
A finite Automata or FA is defined by the

M = (Q, Σ, δ, q0, F),

where
◦ Q is a finite set of states,

◦ Σ is a finite set of symbols called the input alphabet,

◦ δ : Q × Σ → Q is a total function called the transition
function,

◦ q0 ∈ Q is the initial state,

◦ F ⊆ Q is a set of final states.

22

Example Finite Automaton
A path 0, 1, 1, 3 with edges labeled a, b, a. Since 0
is the start state and 3 is a final state, we conclude
that the FA accepts the string aba.

The FA also accepts the string baaabab by traveling
along the path 0, 2, 2, 2, 2, 3, 3, 3.

23

24

A Simple Example
A finite automaton that accepts only “1”

A finite automaton accepts a string if we can follow
transitions labeled with the characters in the string
from the start to some accepting state

1

25

Another Simple Example
A finite automaton accepting any number of 1’s followed by a
single 0

Alphabet: {0,1}

Check that “1110” is accepted but “110…” is not

0

1

26

And Another Example

Alphabet {0,1}

What language does this recognize?

0

1

0

1

0

1

Nondeterministic Finite
Automata (NFA)
1. Edge with Ɛ.

2. Missing labels

3. Multiply edges
start from the
same state with
the same label

27

28

RE to NFA
First parse r into its constituent sub
expressions.

Construct NFA’s for each of the basic symbols
in r.
◦ for 

◦ for a in 

29

RE to NFA (cont.)
For the regular
expression s|t,

For the regular
expression st,

30

RE to NFA (cont.)
For the regular
expression s*,

For the parenthesized
regular expression (s),
use N(s) itself as the
NFA.

Every time we construct a new state, we give it a distinct name.

Example 3.24
Construct an NFA for r = (alb)*abb .

31

Examples

Convert the following RE to NFA:
a | b
(a | b) (a | b)
a *
(a | b)*
a | a*b

32

?

33

